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TESTS FOR PARAMETER INSTABILITY AND STRUCTURAL 

CHANGE WITH UNKNOWN CHANGE POINT 


This paper considers tests for parameter instability and structural change with un-
known change point. The results apply to a wide class of parametric models that are 
suitable for estimation by generalized method of moments procedures. The paper 
considers Wald, Lagrange multiplier, and likelihood ratio-like tests. Each test implicitly 
uses an estimate of a change point. The change point may be completely unknown or it 
may be known to lie in a restricted interval. Tests of both "pure" and "partial" structural 
change are discussed. 

The asymptotic distributions of the test statistics considered here are nonstandard 
because the change point parameter only appears under the alternative hypothesis and 
not under the null. The asymptotic null distributions are found to be given by the 
supremum of the square of a standardized tied-down Bessel process of order p > 1, as in 
D. L. Hawkins (1987). Tables of critical values are provided based on this asymptotic null 
distribution. 

As tests of parameter instability, the tests considered here are shown to have nontrivial 
asymptotic local power against all alternatives for which the parameters are nonconstant. 
As tests of one-time structural change, the tests are shown to have some weak asymptotic 
local power optimality properties for large sample size and small significance level. The 
tests are found to perform quite well in a Monte Carlo experiment reported elsewhere. 

KEYWORDS:Asymptotic distribution, change point, Bessel process, Brownian bridge, 
Brownian motion, generalized method of moments estimator, Lagrange multiplier test, 
likelihood ratio test, parameter instability, structural change, Wald test, weak conver-
gence. 

1. INTRODUCTION 

THIS PAPER CONSIDERS TESTS for parameter instability and structural change 
with unknown change point in nonlinear parametric models. The proposed tests 
are designed for a one-time change in the value of a parameter vector, but are 
shown to have power against more general forms of parameter instability. Tests 
are considered both for the case where the change point can be specified to lie 
in a particular interval and for the case where the change point is completely 
unknown. Tests are considered for the case of "pure" structural change, in 
which the entire parameter vector is subject to change under the alternative, 
and for the case of "partial" structural change, in which only a component of 
the parameter vector is subject to change under the alternative. 

The results given here cover Wald, Lagrange multiplier (LM), and 
likelihood-ratio (LR)-like tests based on generalized method of moments (GMM) 
estimators. Included in this class are tests based on various least squares, 
nonlinear instrumental variables, maximum likelihood (ML), and pseudo-ML 

' I thank Inpyo Li for computing the critical values reported in Section 5. I also thank two 
referees, a co-editor, Jean-Marie Dufour, Bruce Hansen, Werner Ploberger, and the participants of 
the Princeton econometrics workshop for helpful comments. I gratefully acknowledge research 
support from the National Science Foundation through Grant Numbers SES-8821021 and SES- 
9121914. The first version of this paper appeared as the discussion paper Andrews (1989~). 
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estimators among others. See L. P. Hansen (1982) for further discussion of 
GMM estimators. The data may be stationary or nonstationary under the null 
hypothesis of parameter stability, provided they do not exhibit deterministic or 
stochastic time trends. For results based on a more general class of extremum 
estimators, see Andrews (1989~). 

The statistical literature on change point problems is extensive. (See the 
review papers by Zacks (1983) and Krishnaiah and Miao (19881.) The economet- 
ric literature, on the other hand, is relatively small but growing rapidly. Most of 
the results in the statistical literature concern models that are too simple for 
economic applications. Most, but not all, cover scalar parameter models and/or 
models with independent observations. For example, the recent papers by 
James, James, and Siegmund (1987), D. L. Hawkins (19871, and Kim and 
Siegmund (1989) fall into this category. Few econometric models are covered by 
such results. In addition, results in the econometric literature focus entirely on 
linear regression models, e.g., see Chu (1989), Banerjee, Lumsdaine, and Stock 
(1992), Zivot and Andrews (1992), and B. E. Hansen (19921.~ 

The contribution of this paper is to provide results for a wide variety of 
nonlinear models that arise in econometric applications and to provide tests 
that can accommodate different restrictions on the change point. The results 
allow for multiple parameters, temporally dependent data, and nonlinear mod- 
els estimated by a variety of different methods. 

The closest results in the literature to those given here are those of D. L. 
Hawkins (1987). Hawkins considers Wald tests of pure structural change based 
on ML estimators for independent identically distributed (iid) data when no 
information is available regarding the change point. When specialized to this 
case, the Wald test statistic considered here is identical to Hawkins' statistic. 
The method used here to obtain the asymptotic distributional results is essen- 
tially the same as that used by Hawkins (1987). (The proofs are different, 
however, because the present paper applies in a more general context.) 

The remainder of this paper is organized as follows: Section 2 describes the 
null hypothesis and various alternative hypotheses that are of interest. Section 3 
introduces a class of partial-sample GMM (PS-GMM) estimators and estab- 
lishes their asymptotic distributions. Section 4 defines the Wald, LM, and 
LR-like test statistics which are based on the PS-GMM estimators. Section 5 
determines the asymptotic null distributions of the Wald, LM, and LR-like test 
statistics and provides tables of critical values for them. Section 5 also estab- 
lishes the asymptotic distributiops of these test statistics under local alternatives 
and obtains two local power optimality results. Section 6 contains some conclud- 
ing comments. An Appendix provides proofs of the results given in the paper. 

Lastly, we mention notational conventions that are used throughout the 
paper: Unless specified otherwise, all limits are taken as T -+ m, where T is the 
sample size. The symbol =, denotes weak convergence as defined by Pollard 

One paper in the econometrics literature that does consider nonlinear models is B. E. Hansen 
(1990). This paper was written subsequent to the first version of the present paper. 
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(1984, pp. 64-66) for sequences of (measurable) random elements of a space of 
bounded Euclidean-valued cadlag functions on [O, 11 or on L'c(0, l )  equipped 
with the uniform metric and the a-field generated by the closed balls under this 
metric, 4, denotes convergence in distribution, 4, denotes convergence in 
probability, C: abbreviates C:=,, 11.11 denotes the Euclidean norm of a vector or 
matrix, I I  . 112 denotes the L~norm of a random vector (i.e., llXl12 = ( E ~ ~ x I I ~ ) ' / ~ ) ,  
and for simplicity TT denotes [TT], where [.I is the integer part operator. L' 
denotes a set whose closure lies in (0,l). Throughout, it is implicitly assumed 
that any sequence of random variables or vectors that converges in probability 
or almost surely to zero is Bore1 measurable. 

2. HYPOTHESES OF INTEREST 

In this section we discuss the null and alternative hypotheses of interest and 
provide a general discussion of the choice and use of the test statistics that are 
considered in the paper. 

We consider a parametric model indexed by parameters (P,, 6,) for t = 

1,2,. . . . The null hypothesis of interest here is one of parameter stability: 

In the case of tests of pure structural change, no parameter 6, appears and the 
whole parameter vector is subject to change under the alternative hypothesis. In 
the case of tests of partial structural change, the parameter 6, appears and is 
taken to be constant under the null hypothesis and the alternative. 

The alternative hypothesis of interest may be of several forms. First, consider 
a one-time structural change alternative with change point T E (0,l). Here, T is 
the sample size, TT is the time of change, and for simplicity T, rather than TT, 
is referred to as the change point or point of structural change. The one-time 
change alternative with change point T is given by 

(2.2) 	 H,T(T):  P, = 
P,(T) for t = 1 , . . . , TT 

P 2 ( r )  for t = TT + 1 , . . 

for some constants P,(T) ,  P 2 ( r )  E B c R P .  

For the case where T is known, one can form a Wald, LM, or LR-like test for 
testing H, versus H,,(T) (e.g., see Andrews and Fair (1988) for such tests in 
nonlinear models). For specificity, let WT(r),  LMT(r) ,  and LR,(T), respec-
tively, denote the test statistics that correspond to these tests. For a normal 
linear regression model (with P, equal to the regression parameter), these tests 
are equivalent F tests and are often referred to in the literature as Chow tests. 

In the present paper, we are interested in cases where the change point T is 
unknown. In such cases, one has to construct test statistics that do not take T as 
given. Doing so is complicated by the fact that the problem of testing for 
structural change with an unknown change point does not fit into the standard 
"regular" testing framework; see Davies (1977, 1987). The reason is that the 
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parameter r only appears under the alternative hypothesis and not under the 
null. In consequence, Wald, LM, and LR-like tests constructed with .rr treated 
as a parameter do not possess their standard large sample asymptotic distribu- 
tions. 

Here we adopt a common method used in this scenario and consider test 
statistics of the form 

(2.3) 	 sup WT(.rr), sup L M T ( r ) ,  and sup L R T ( r ) ,  
,€II ,€II rr €U 

where 17 is some pre-specified subset of [0, 11whose closure lies in (0,l). (The 
specification of 17 is discussed below.) Other papers that consider tests of this 
form include Davies (1977, 1987) and D. L. Hawkins (1987) among many others 
in the statistical literature. Tests of this form can be motivated or justified on 
several grounds. First, sup, ,,LRT( r )  is the LR (or LR-like) test statistic for 
the case of an unspecified parameter r with parameter space 17. In addition, 
the test statistics sup,,, WT(r)  and sup,, ,LMT(r )  are asymptotically equiv- 
alent to sup,,, LRT(.rr) under the null and local alternatives under suitable 
assumptions. Second, the test statistics sup, ,WT(r),. .. ,sup, ,L R T ( r )  
correspond to the tests derived from Roy's type I (or union-intersection) 
principle; see Roy (1953) and Roy, Gnanadesikan, and Srivastava (1971, pp. 
36-46). Third, the above test statistics can be shown to possess certain (weak) 
asymptotic optimality properties against local alternatives for large sample size 
and small significance level. These results are due to Davies (1977, Thm. 4.2) for 
scalar parameter one-sided tests and are extended below to multi-parameter 
two-sided tests. 

We note that although the paper concentrates on statistics of the form (2.31, 
the results of the paper apply more generally to statistics of the form g({WT(r): 
.rr €171) for arbitrary continuous function g (and likewise for LMT(.) and 
LRT(.)). Depending upon the alternatives of interest, one may want to use a 
function g that differs from the "sup" function. For example, in the maximum 
likelihood case analyzed recently by Andrews and Ploberger (1992), test statis- 
tics of the form /,h(WT(r), .rr) dA(.rr) are considered. Test statistics of this form 
are found to have some advantages in terms of weighted average power, for a 
certain weight function, over test statistics of the "sup" form. 

We now return to the discussion of the alternative hypotheses of interest. 
Two distinct cases arise. The first is the case where interest centers on change 
points in a known restricted interval, say 17c(0,l). The second is the case 
where no information is available regarding the time of possible structural 
change and hence all change points in (0, l )  are of some interest. 

The case of a known restricted interval 17 arises when one wants to test for 
structural change that is initiated by some political or institutional change that 
has occurred in a known time period. For example, in a model estimated using 
annual data from 1920 to 1989, say, one might want to test for structural change 
occurring sometime in the "war period" 1939-1949. In this case, one would 
specify 17= [20/70, 31/70]. Analogously, for some models of post-World War 
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I1 U.S. economic behavior, the Viet Nam war period might be of interest as a 
potential time of structural change. Alternatively, one could test for a presiden- 
tial administration effect (or a chairman of the Fed effect) on certain parame- 
ters by letting Il correspond to a president's (chairman's) term of office. 

A second set of cases where one can specify a restricted, but nondegenerate, 
interval Il includes those in which a specific exogenous event is the potential 
cause of structural change, but change occurs only after a lag of unknown length 
or before the event due to anticipation of the event. For example, in a model of 
aggregate or disaggregate productivity, one might want to test for structural 
change that occurs some time around the 1973 oil price shock. Or, in a model of 
the communications industry, one might want to test for structural change that 
occurs some time close to the court decision to break up AT&T. Or, in a small 
open economy, one might want to test for structural change that occurs some 
time close to a significant change in tariff or exchange rate policy. As a last 
example, in an industry study, one might want to test for structural change that 
occurs some time close to the introduction of a new product or technological 
process (which may take some time to diffuse), such as a new drug, a new 
chemical, or new computer equipment. 

For any of the above examples, the tests considered in this paper can be 
applied using the critical values provided below for a very broad range of 
different Il intervals. The only requirement is that Il be bounded away from 
zero and one for reasons discussed below. 

Note that the structural changes associated with the above events may be 
more complicated than an abrupt change. For example, there may be a 
movement from one regime to another with a transition period in between. It is 
shown below that the tests considered here have power against alternatives of 
this sort even though they are not the alternatives for which the tests are 
designed. 

Next, we consider the case where no information is available regarding the 
time of structural change. This case arises, for example, when one wants to 
apply a test of structural change as a general diagnostic test of model adequacy. 
The usefulness of such tests is well recognized in the literature, as shown by the 
widespread use of the CUSUM test of Brown, Durbin, and Evans (1975) for 
linear regression models and by the inclusion of rolling change point tests (even 
without accompanying distributional theory) in popular econometric packages 
such as PC-GIVE and Datafit; see Hendry (1989, pp. 44, 49). 

When a structural change test is employed as a general diagnostic test of 
model adequacy, the range of alternatives of interest is usually broader than 
U ,,,HIT(.rr) for some Ilc (0,l). In such cases, the alternative hypothesis 
may be 

(2.4) HI:p, # p, for some s, t > 1. 

Although the tests sup,, ,WT(.rr),. . . , sup, LRT(.rr) are constructed with 
the more restricted alternatives U ,,,HIT(.rr) in mind, we show below that 
they have power against more general alternatives in HI .  In particular, we 
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consider local alternatives of the form p, = p, + q(t/T)/ 0for some bounded 
function q ( . )  on [O, 11 (as do Ploberger, Kramer, and Kontrus (1989)) and show 
that the tests of (2.3) have power against all alternatives for which q( . )  is not 
almost everywhere on 17 equal to a constant. In addition, these tests even have 
power against many alternatives for which v(.) is constant on 17 and noncon- 
stant elsewhere. Thus, as tests of parameter instability, the tests of (2.3) have 
some desirable properties. 

On the other hand, if the model is stationary under the null and parameter 
instability can be characterized by the omission of some relevant, but unob- 
served, stationary variables (which can be viewed as causing structural change 
with an infinite number of regime changes as T -+ m), then tests of the form 
(2.3) will not detect it asymptotically. The reason is that the model is stationary 
under the alternative, and so, the nonrandom parameters p, (however defined) 
are constant across all t 1. 

A natural choice of the set of change points 17 for use with the statistics 
of (2.3) is (0,l)  when one has no information regarding the change point. 
This choice, however, is not desirable. When 17= (0, I), the statistics 
SUP, ,,WT(.?r),. . . ,SUP,, ,LRT(.?r) are shown below to diverge to infinity in 
probability, whereas when 17 is bounded away from zero and one the statistics 
converge in distribution. In consequence, the use of the full interval (0, l )  results 
in a test whose concern for power against alternatives with a change point near 
zero or one leads to much reduced power against alternatives with change 
points anywhere else in (0,l). Thus, when no knowledge of the change point is 
available, we suggest using a restricted interval 17, such as 17= [.15,.85]. 

As tests of general parameter instability, the tests of (2.3) can be compared 
with several other tests in the literature, such as the CUSUM test of Brown, 
Durbin, and Evans (1975) and the fluctuation test of Sen (1980) and Ploberger, 
Kramer, and Kontrus (1989). These tests are all designed for the linear regres- 
sion model whereas the tests of (2.3) apply more generally. A drawback of the 
CUSUM test is that it exhibits only trivial power against alternatives in certain 
directions, as shown by Kramer, Ploberger, and Alt (1988) using asymptotic 
local power and by Garbade (1977) and others using simulations. The tests of 
(2.3) do not exhibit these local power problems. The fluctuation test is similar to 
the sup,, ,WT(.?r) test considered here, but the latter possesses large sample 
optimality properties for each fixed .?r, whereas the former does not. 

Monte Carlo comparisons of the CUSUM, fluctuation, and sup,,, WT(.?r) 
tests reported in Andrews (1989~) show that sup,, ,WT(.?r) is superior to the 
CUSUM test in terms of closeness of true and nominal size and very much 
superior in terms of power (both size-corrected and uncorrected) for almost all 
scenarios considered. In addition, sup,,, WT(.?r) is clearly preferable to the 
fluctuation test in terms of the difference between true and nominal size and in 
terms of uncorrected power and more marginally preferable in terms of size- 
corrected power. 

Several additional tests in the literature for testing for parameter instability 
are the tests of Leybourne and McCabe (19891, Nyblom (19891, and B. E. 
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Hansen (1992). (Also, see the references in Kramer and Sonnberger (1986, pp. 
56-59).) These tests are designed for alternatives with stochastic trends and, 
hence, have a different focus than the tests considered here. On the other hand, 
they also have a number of similarities. 

3. PARTIAL-SAMPLE GMM ESTIMATORS 

In this section we analyze partial-sample GMM (PS-GMM) estimators. 
PS-GMM estimators are GMM estimators that primarily use the pre-TT or the 
post-TT data in estimating a parameter P for variable values of T in 17 and use 
all the data in estimating an additional parameter 6. These estimators are the 
basic components of the sup Wald test. Furthermore, the properties of PS-GMM 
estimators are used to obtain the asymptotic distribution of the corresponding 
sup LM and LR-like statistics. 

The first subsection below defines the class of estimators to be considered. 
The second subsection establishes the weak convergence of PS-GMM estima- 
tors to a function of a vector Brownian motion process on [0, 11 restricted to 17. 
The third subsection considers the estimation of unknown matrices that arise in 
the limiting Brownian motion process. Estimators of these matrices are needed 
to construct the Wald and LM statistics. 

3.1. Definition of Partial-Sample GMM Estimators 

First we define the standard GMM estimator, which we call the full-sample 
GMM estimator. Under the null hypothesis of parameter stability, the unknown 
parameter to be estimated is a p + q-vector (Pt,  St)'. Let B ( cRP) and A ( C  Rq) 
denote the parameter spaces of p and 6 respectively. We assume the data are 
given by a triangular array of rv's {W,,: 1 6 t 6 T, T 2 I} defined on a probabil- 
ity space (0,F,P).(By definition, a rv is Borel measurable.) Triangular arrays 
are considered because they are required for the local power results below. 

The observed sample is {W,:1 6 t 6 TI, where W, is used here and elsewhere 
below to denote W,, for notational simplicity. The population orthogonality 
conditions that are used by the GMM estimator to estimate the true parameter 
(Pb, SLY are Po, 6,) 0 for specified( ~ / T ) C T E ~ ( W , ,  = a RV-valued function 
m(.,  . ,  . I .  

DEFINITION:A sequence of full-sample GMM estimators {(p, 6): T > I} is any 
sequence of (Borel measurable) estimators that satisfies 

with probability -+ 1, where (PI, 6')' EB X A cR P  X Rq, m(.,  . , . ) is a function 
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from W x B x A to R", W c R ~ ,and .j/ is a random (Bore1 measurable) symmet- 
ric v x v matrix (which depends on T in general). As is well-known (e.g., see 
L. P. Hansen (1982)), the class of GMM estimators is quite broad. Among 
others, it includes least squares, nonlinear instrumental variables, ML, and 
pseudo-ML estimators. 

Next consider the case where the sample is broken into two parts, viz., 
t = 1 , .. . ,TT, and t = TT + 1,. . . ,T, the parameter p takes the value pl for the 
first part of the sample and another value P2 for the second part, and the 
parameter 6 is constant across the whole sample. In this case, the unknown 
parameter of interest is 8 = (@;,Pi, 6')' E O =B X B X A c RPX R PX Rq. 

Let 6 = (p ' ,p l ,g')'. We call 8 the full-sample GMM estimator of 8. It is a 
restricted estimator that is consistent only under the null hypothesis that 
P1= P2. 

We now define an unrestricted GMM estimator of 8 that allows the estimates 
of p, and p2 to differ. Suppose the true value of 8 is (pi,, Pi,, 6;)'. For the 
observations t = 1,. . . , TT, we have the population orthogonality conditions 
( ~ / T ) C T " E ~ ( W , ,PI,, 6,) = 0, and for the observations t = TT + 1, .. . ,T, we 
have a second set of orthogonality conditions (l/T)C~,+,Em(W,, P,,, 6,) = 0. 
For each potential change point T EZ l c  (O,1), we can define an estimator that 
is based on the sample analogues of these orthogonality conditions. The 
collection of such estimators for T E D  is called the partial-sample GMM 
estimator of 8. 

DEFINITION:A sequence of partial-sample GMM estimators { i ( .  ): T & I} = 

{($(T): T E Zl): T > 1) is any sequence of estimators that satisfies 

for all T E Zl 

with probability -+ 1 and $(.) is a random element, where 8 = (pi,  P i ,  6')' E 

O = B x B x A c R P X R P X R 4 ,  

m(. , . , .) is a function from W X B X A to R", wcR ~ ,  is a random?(T) 
symmetric 2 v  X 2v matrix (which depends on T in general), and .j/(.) is a 
random element. 

Existence of partial-sample GMM estimators can be established under stan- 
dard conditions. For example, compactness of O and continuity of the criterion 
function above are sufficient. 

(By definition, a random element is a measurable function from ( O , F ,  P) to 
a space of bounded Euclidean-valued cadlag functions on [O,l] or on Zl c (0, l )  
equipped with the v-field A generated by the closed balls under the uniform 
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metric. Note that such a function, say j ,  is necessarily F/A-measurable, and 
hence is a random element, if j ( ~ )  is F/Borel-measurable for all T EIl;see 
Pollard (1984, Problems 2 and 4(b), pp. 80-81). Thus, measurability of 6(.) can 
be established under standard assumptions. For brevity, we do not give suffi- 
cient conditions here.) 

As the definition indicates, $71.) = ( f l1(~l ' ,  &(T)', t(7~l'l' is a 2 p  + q-vector 
comprised of an estimator /?,(TI E R P  that primarily uses the pre-TT data, an 
estimator i 2 ( r )  E R P  that primarily uses the post-TT data, and an estimator 
$(TIE Rq that uses all of the data. For a fixed value of T, the PS-GMM 
estimators defined above are a special case of the extremum estimators of 
Andrews and Fair (1988). 

3.2. Weak Convergence of Partial-Sample GMMEstimators 

In this subsection we establish the asymptotic distribution of the PS-GMM 
estimator 6 ( . )  for the case of no structural change. To do so, we need to 
intrpduce some additional notation and definitions. The asymptotic distribution 
of O(. )  depends on the following matrices: 

For simplicity, let m, or m,, denote m(W,,P,, So). Let the domain W of 
m(. ,  p ,  8)  be chosen to include the support of W, Vt,VT. Let B, and A ,  denote 
some compact subsets of R P  and Rq that contain neighborhoods of Po and 6, 
and are contained in the parameter spaces B and A respectively (where 
8, = (pb, pb, 8;)' when no structural change occurs). Let pTtdenote the distri- 
bution of W,, and let jZT = ( l / ~ ) C r p , ~We say that {p,: T a 1) is tight on W 
if limj,,supT.l (I/T)C~P(W,, E C,) = 0 for some sequence of compact sets 
C, c W for j 2 1. (A sufficient condition for tightness of {jZT: T a 1) when W is 
closed is the weak moment condition l imT, , ( l /~)C~EII~ , , I I f  < for some 
s > 0.) For a sequence of nonrandom matrices {A,(A): T a  11 indexed by a 
parameter A EA,  we say that lirn,,, A,(A) exists uniformly over A EA,  if 
there exist matrices {A(A): A E A} such that lim, ,,sup,, A lA,(A) -A(A)l = 0. 
Following McLeish (1975a), for a constant q > 0 and a sequence of nonnegative 
constants {v,: m 2 11, we say that {v,: m 2 1) is of size - q  if v, converges to 
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zero at a fast enough rate. A sufficient condition is that v, = O ( m - A )for some 
A > q. The precise definition of size is given in McLeish (1975a). 

Next, we define a type of asymptotically weak temporal dependence called 
near epoch dependence (NED). This concept has origins as far back (at least) as 
Ibragimov (1962). It has appeared in various forms in the work of Billingsley 
(1968), McLeish (1975a, b), Bierens (1980, Gallant (1987), Gallant and White 
(1988), Andrews (1988), Wooldridge and White (19881, B. E. Hansen (1991), and 
Potscher and Prucha (1991) among others. The NED condition is used to obtain 
laws of large numbers, CLTs, and invariance principles for triangular arrays of 
temporally dependent rv's. It is one of the most general concepts of weak 
temporal dependence for nonlinear models that is available. See Bierens (19811, 
Gallant (1987), Gallant and White (19881, and Potscher and Prucha (1991) for 
examples of its application to particular econometric models. 

DEFINITION:For p a 0, a triangular array of rv's {X,,: t = 1,. . . ,T, T 2 1) is 
said to be LP-NED on the strong mixing base {YTt:t = ...,0,1,.  . .; T 2 1) if {Y,,: 
t = . . . ,0,1,.  . . ; T 2 1) is a strong mixing (i.e., a-mixing) array of rv's and 

as m -+co when p > 0 or 

as m-+w Vs>O when p = O .  For p > O ,  q > 0 ,  and r>O,  {X,,: t = 1 ,  ..., 
T, T a  1) is said to be LP-NED of size -q on a strong mixing base 
{Y,,: t = ...,0,1,. ..; T 2  I} of size -r if {v,: m a 1) is of size -9, where 
V, = S U P , ~ T ,  IIXTt-E(XTIIYTI-m,...,YTI+m)lIPm 2 11 is of size and {a,: 
- r ,  where {a,: m 2 1) are the strong mixing numbers of {YTt}. 

The following assumption is sufficient to obtain the weak convergence under 
the null hypothesis of the PS-GMM estimator as a process indexed by 
T €17. 

ASSUMPTION1: (a) {W,,: t < T, T 2 I} is a triangular array of W-valued rv's 
that is Lo-NED on a strong mixing base {YTt:t = .. . ,0,1, . . . ;T 2 I}, where W is a 
Bore1 subset of R ~ ,and { P , :  T,> I} is tight on W .  

(b) For some r > 2, {m,,: t < T, T 2 1) is a triangular array of mean zero 
Rv-valued rv's that is L2-NED of size - 1/2 on a strong mixing base {Y,,: 
t = . . .,0,1, ...; T >  I} of size - r / ( r  - 2) and sup,.,, , > ,  E l l m T , l l r < ~ .  

(c) Var((l/ f l )~T"rn, , )  -,TS QT E [O,11 for some positive definite v X v 
matrix S .  

(dl supT,, l l 8 ( ~ )  eoll-, 13, for some 8, = (Pb, Pb, SbY in the - 0 and 6 -+, 

interior of O =B X B X A. 
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(el sup,, ,llT(.rr)- y(.rr)ll -t, 0 for some symmetric 2v X 2v matrices Y(T) 
for which sup,,, Ily(~>ll< m. 

(f) m(w, p ,S)  is partially differentiable in (P,  6) V(P, 6) E B, x A, Vw E W, cW 
for a Borel measurable set W, that satisfies P(WTt E W,) = 1 Vt < T, T >, 1, 
m(w, p ,  6) is Borel measurable in w V(P, 6) E B, x A,, dm(w, p ,  6>/d(pf, 6') is 
continuous in (w, p ,  6) on W x B, x A,, and 

for some E > 0. 

(g) lim, ,, w,,, Po, SO)/d(pf, 6') exists uniformly .rr E IJ( ~ / T ) C T " E ~ ~ (  over 
and equals TM VT E 17. 

(h) M(T) '~ (T)  M(T) is nonsingular VT E 17 and has eigenvalues bounded 
away from zero. 

We now discuss Assumption 1. Assumptions l(a) and (b) are typical of 
asymptotic weak dependence conditions found in the literature on nonlinear 
dynamic models; see the references above. They are closest to conditions given 
by Potscher and Prucha (1991). Assumptions l(c) and (g) are asymptotic 
covariance stationarity conditions that are used for the results of the present 
paper, but are not needed for results in the literature that deal only with the 
estimation of nonlinear dynamic models. Assumptions l(d) and (el are used to 
show that various remainder terms in the proof of weak convergence of 6(.) are 
negligible. Sufficient conditions for Assumption l(d) are provided in the Ap- 
pendix. The verification of Assumption l(e) depends, of course, on the choice of 
the weight matrix T(.rr). Often T(.rr) is of the form ~ia~{S^,~(T)/ . r r ,  S^;'(T)/ 
(1 - T ) } ,  where S^,(.rr) is an estimator of S for r = 1,2. The definition of, 
motivation for, and uniform consistency of the estimators $,(TI are discussed in 
the Comment following Theorem 1 and in Section 3.3 below. Assumption l(f) is 
a standard smoothness condition on the function m(w, /3,6). It could be relaxed 
at the expense of greater complexity by using the approaches taken in Huber 
(1967), in Andrews (1989a, b), or elsewhere in the literature. Assumption l(h) 
ensures that the estimator 6 ( ~ )  has a well-defined asymptotic variance V.rr E IJ. 
In the common case that y ( ~ )  is of the form Diag { y /.rr, y/( l  -T)), Assump- 
tion l(h) holds if y, M, and M, are full rank v, p ,  and q respectively and IJ has 
closure in (0,l). For the ML estimator, for instance, this requires that the 
information matrix for ( p , 6) in the case of parameter constancy is nonsingular, 
as usually occurs. 

Before stating the main result of this section, we introduce some additional 
notation. Let {B(T): .rr E [0, 11) denote a v-vector of independent Brownian 
motions on [O, 11.Let 

http:~ia~{S^,~(T)/.rr
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THEOREM1: Under Assumption 1, every sequence of PS-GMM estimators I$.): 
T 2 1) satisfies 

( 9 - 0 Y ) ) - ~ M ( ~ ) ' Y ( . ) G ( ~ )  

as a process indexed by rr E 17, provided Il has closure in ( 0 , l ) .  

COMMENT:For any fixed value of n-, an optimal choice of the asymptotic 
weight matrix Y(n-)  is 

This matrix is asymptotically optimal in the sense of minimizing the covariance 
matrix of the asymptotic normal distribution of the normalized estimator 
fi(i(rr) - o , ) . ~  For y(.rr) as in (3.51, the limit process of fi(i(.rr) - 8,) 
evaluated at n- can be written as 

3.3. C0r:ariance Matrix Estimation for Partial-Sample GMM Estimators 

The Wald statistic defined in Section 4 below is based on the vector f i ( p , ( . )  
- p,(.)). Here we introduce estimators of the unknown matrices that appear in 
the limit distribution of f i ( p l ( . )  - $,(.)). These estimators are needed to 
construct the weight matrices of the Wald and LM test statistics. For brevity, we 
consider the standard case where the weight matrix f ( n - )  is chosen to be 
asymptotically optimal: 

ASSUMPTION Diag { S 1 / n - ,  S p ' / ( l  n-)} for2: Y(n-)= -

(as  in Assumption 1). 

Let 

(3 .7)  H = [I,: - I,:o] tR P * " ~ ~ ' ) .  

This result can be proved using standard arguments; e.g., see the proof of Theorem 3.2 of L. P. 
Hansen (1982). 
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By Theorem 1, J?;(&(.rr) - fi2(7-r))=~ f i ( $ ( . r r )- 00)converges in distribution 
to H(M(~Yy(.rr)M(.rr))-~M(.rrYy(.rr)G(.rr). ofBy (3.6) and Lemma A5 the 
Appendix, the latter simplifies to 

Consider the following estimators of V: 

(3.9) ( 7 ) = for = 1,2.'( ~ ~ . r r S ^ ~ . r r ~ ~ . r r ) ~  

The estimators M,(T) and S^,(.rr) can be defined in two ways. The first way uses 
only the data for t = 1,. ..,T.rr for the case r = 1 and only the data for 
t = TT + 1,. ..,T for the case r = 2: 

(Corresponding estimators S^ , (T)  are defined below.) The second way uses all of 
the data for r = 1and r = 2: 

where (6 ,  8) are the full-sample GMM estimators of (p ,  6). 
The estimators defined in (3.10) and (3.11) have the same probability limits 

under the null hypothesis and under sequences of local alternatives (see Section 
5). They do not necessarily have the same probability limits, however, under 
sequences of fixed alternatives. Typically, unrestricted estimators, such as those 
of (3.10), are used to construct weight matrices for Wald statistics whereas 
restricted estimators, such as those of (3.111, are used for LM statistics. The 
weight matrix is taken to equal (Ti,(,,)/,, + f2(.rr)/(1 - ,,))-I in either case, but 
in the latter case &(T)  = f 2 ( r )= f .  AS with the choice of weight matrices for 
classical Wald and LM tests, one cannot distinguish between the two methods 
based on local power. 

under the assumptions, ( ~ ~ ( r ~ S " ; ' ( r ) ~ ~ ( r ) ) - l  -+ 1. Whenmay exist only with probability 
( M ~ ( = Y S ; ~ ( ~ T T ) M ~ ( ~ ) ) - ~is singular, a g-inverse can be used in place of the inverse. Similar 
comments apply elsewhere below. 
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Next we consider the definition of the estimators S^,(T) of S(= 
lim, , , ~ a r  ((l/  @)CTm,)>. If {m,: t > 1) consists of mean zero uncorrelated 
rv's, then S = lim, ,,(l/T)CTEm,m: and we define either 

for r = 1,2, 

where z l T ( r )  = ( l / T r ) C T p r n ( ~ , ,  pnl(r>, &TI), zZT(77)= ( I / (T  -
T T > ) c ~ , + , ~ ( w , ,fi2(r), &T)), and E ,  = (l/T)CTm(W,, /3, 8). 

Alternatively, if {m,: t I} consists of mean zero temporally dependent IT'S, 
then S = C;=oTv + TElr,', where Tv = l i m , , , ( l / ~ ) ~ ~ + ~ ~ r n , m ~ .In this 
case, the estimator S,(T) corresponding to (3.11) can be taken to be 

for r = 1,2, where k ( . )  is a kernel and l ( T )  is a (possibly data-dependent) 
bandwidth parameter. The estimator Ŝ  is a kernel estimator of the spectral 
density matrix at frequency zero of the sequence of rv's {m(W,, So, Po): t < T); 
e.g., see Hannan (1970). For a suitable choice of kernel, S  ̂ is necessarily positive 
semi-definite. See Andrews (1991) regarding the choice of kernel and bandwidth 
parameter.' Unrestricted kernel estimators Shl(r) and S",(r) that correspond to 

'An attractive alternative to the kernel estimator of (3.16) is a prewhitened kernel estimator 
described in Andrews and Monahan (1992) (and for brevity not defined here). This estimator has 
proved to work well in simulation studies in terms of minimizing the discrepancy between the 
nominal and true size of test statistics constructed using a nonparametric covariance matrix 
estimator. 

mailto:@)CTm,)>
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(3.10) can be defined analogously to (3.14) using the data from the time periods 
1,...,Trr and Tn- + 1,...,T, respectively, and using the estimators (pl(rr), 8(n-)) 
and (b2(rr), 8(.rr)) respectively. 

Under Assumptions 1 and 2 and the following assumption, the estimators 
t ( r )  defined above are consistent for V uniformly over rr E II: 

ASSUMPTION that satisfies 3: t ( r )  is con~tructed using an estimator S^,(n-) 

supT,, ll$,(n-) - Sll -fp 0 and V,(.) is a random element for r = 1,2. 

Assumption 3 holds for S^,(n-) as defined in (3.13) under Assumption 1 plus 

Assumption 3 holds for S^,(n-) as defined in (3.12) under the same conditions 
provided II has closure in (0,l) (using Lemmas A3 and A4 of the Appendix in 
the proof). Assumption 3 holds for $,(TI as in (3.14) under the conditions given 
in Andrews (1991). 

THEOREM2: Under Assumptions 1-3, 

sup I I ~ ( ~ - ) - v I / + , o  f o r r = 1 , 2 ,  
T G l l  

provided II has closure in (0,l). 

4. DEFINITIONS OF THE TEST STATISTICS 

4.1. The Wald Statistic 

The Wald statistic for testing H, against HIT(n-) is given by 

where P1(r) and P2(r)  are as in (3.9) plus either (3.10) or (3.10, etc. Based on 
WT(n-), the following statistic can be used for testing H, versus U,,,HIT(rr) 
or H, versus HI: 

(4.2) wT(n-) ,
%-En 

where II is a set with closure in (0,l). One rejects H, for large values of 
SUPT WT(7). 

Note that the asymptotic variance of @(B1(r) -b2(r) )  takes on the additive 
form V/rr + V/(1 - rr) even though Assumption 1 allows for temporal depen- 
dence. This occurs because of the assumption of asymptotically weak temporal 
dependence plus the fact that the fraction of observations that are close to the 
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change point, say within R time periods, goes to zero as T +w and this holds 
for all R. 

The sup Wald test of (4.2) has been considered previously by others in less 
general contexts. For example, D. L. Hawkins (1987) considers it in the context 
of tests of pure structural change based on ML estimators for models with iid 
observations. Hawkins takes 17= [E,1-E] for small E > 0, whereas we consider 
more flexible choices of 17. 

One can compute WT(.rr) using a standard GMM computer routine as follows. 
For given EII, form the vector of orthogonality conditions E,(f3, T) and 
the weight matrix -j/(.rr) = S^zl(.rr)/(l -7)). Let $T) and~ia~{S^c'(.rr)/.rr, 
d(.rr) denote the parameter vector and its estimated covariance matrix that are 
produced by the GMM computer routine. Then, W,(T) equals 
6(a)'H'(Hd(.rr)~')-'H6(.x),where H = [I,: -1,:0].~ 

4.2. The LM Statistic 

Next we define the LM,(T) statistic. It makes use of the full-sample GMM 
estimator 6 =(fit,$', $ I ) ' .  For fixed change point 7, the LM statistic is a 
quadratic form based on the vector of first-order conditions from the minimiza- 
tion of the PS-GMM criterion function evaluated at the restricted estimator i 
(i.e., [aET(6, .rr)/ae']'-j/(.rr)E,(i, T)). The weight matrix of the quadratic form is 
chosen such that the statistic has a Xidistribution under the null for each fixed 
T. The LM statistic can be written as 

(4.3) L M T ( r )  = C , ( T ~ ( P ~ ( T ) / T+ P ~ ( T ) / ( I  -n-))-lc,(T), where 

and Mr =Mr(.rr), S ,̂ = S^,(.rr), and t ( . r r )  are as in Section 3.3 for r = 1,2. 
Typically one uses "restricted" estimators M~(T), S^,(T), and t ( . r r ) ,  when 

constructing the LM statistic. In this case, LMT(r) simplifies. In particular, 
suppose Mr(.rr) =M is as in (3.11) and Shr(.rr) = S is as in (3.13) or (3.14). Then, 

6 ~ sdefined, the weight matrix ( H ~ ( T ) H ' ) - 'will not necessarily be identical to that specified in 
(4.11, but it will at least be asymptotically equivalent to it. 

http:~ia~{S^c'(.rr)/.rr
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L M T ( r )simplifies to 

where 

and = denotes equality that holds with probability + The LM statistic is 
particularly easy to compute because the only estimate of 6 that is required is 
the full-sample GMM estimate. 

4.3. The LR-like Statistic 

Lastly, we define the LR-like test statistic. For fixed change point T, it is 
given by the difference between the PS-GMM objective function evaluated at 
the full sample GMM and the PS-GMM estimators: 

As in (4.2), for testing Ho versus U ,,,HIT(r) or Ho versus H ,  based on 
LMT( . )or LRT( . ) ,we consider 

(4.6) sup L M T ( r )  and sup L R T ( r ) .  
7 r G n  " G l l  

The null hypothesis H,  is rejected for large values of these statistics. 

5. ASYMPTOTIC PROPERTIES OF THE TEST STATISTICS 

5.1. Asymptotic Distributions under the Null Hypothesis 

This subsection provides the asymptotic null distributions of the test statistics 
introduced in Section 4. 

7The simplification of LM,(a) from (4.3) to $4.42 occurs because jh_e first-order condi-
tions of the full-sample GMM estimator are [M:M,]'S-'(~/T)CT~(W,,~,S)a 0, where M, = 

( l /~)CTarn(W, ,j,i ) / a s1 .In consequence, 
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THEOREM3: Suppose Assumptions 1-3 hold. Given any set 17 whose closure 
lies in (O,l), the following processes indexed by .rr E 17 satisfy: 

(a) WT(.)-Qp(.) and sup,,, W,(r)-+, sup,,,Q,(.rr), where Q,(T)= 
- .rrBp(l))l(Bp(.rr)- rBp(l))/[.rrTT(l- .rrTT)I; 

(b) LM,(.) -Q,<.) and sup,, ,LM,(.rr) +,sup,, ,&,(TI; 
(c) LRT(.)-Qp(.) and sup,, ,LRT(r)+,sup,, ,Q,(.rr); 

where B,(.) is a p-vector of independent Brownian motions on [0, 11 restricted to 
17. The convergence in (a)-(c) holds jointly. 

COMMENTS: is referred to in the literature as the 1. The limit process &,(.I 
square of a standardized tied-down Bessel process of order p ;  see Sen (1981, 
p. 46). For any fked .rr E (0, I), Q,(r)has a chi-square distribution with p 
degrees of freedom. Under the assumptions, the asymptotic null distribution of 
SUP, ,,W,(r), . . . ,SUP, ,,LR,(.rr) is free of nuisance parameters except for 
the dimension p of p. Thus, critical values for the test statistics can be 
tabulated; see Section 5.3 below. 

2. The requirement that 17 is bounded away from zero and one is made to 
ensure that the estimators upon which the test statistics are based are uniformly 
consistent for .rr E17 and to ensure that the function mapping B,(.) into Q,(.) 
is continuous. For example, if 17= [O, 11, the functions 7 -+ 1/r and r + I /  
(1 - r )  are not continuous. In fact, if 17 = [O, 11, the test statistics 
SUP, ,,W,(T), . . . ,SUP, ,,LRT(r)  do not converge in distribution; see Corol- 
lary 1below. 

3. Theorem 3 establishes the asymptotic distributions of test statistics of the 
form g({W,(r): r E 17)) for arbitrary continuous functions g (using the uni- 
form metric on the space of bounded cadlag Euclidean-valued functions on 17). 
In particular, g({WT(~): 7E 171) -g({Q,(.rr): 7E 17)) under the assumptions 
and likewise for LM,(. ) and LRT(. ). 

5.2. Asymptotic Behavior of the Test Statistics When 17= [O,11 

Next, we consider the limiting behavior under the null of the statistics 
sup,,, WT(r),. . . ,SUP,, ,LR,(.rr) when 17= [O, 11. For the location model 
with iid N(0,l) errors, D. M. Hawkins (1977) has already investigated this 
behavior (heuristically). In the general model scenario considered here, this 
behavior is determined using the results of Theorem 3. Note that Anderson and 
Darling (1952, Sec. 5) have considered a similar problem. 

COROLLARY1: Suppose the conditions of Theorem 3 and the null hypothesis H ,  
hold. Then, 
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COMMENTS:1. The Corollary shows that the restriction in Theorem 3 to sets 
II whose closure is in (0,l) is not made only for technical convenience. Unless 
II is bounded away from zero and one, critical values for the test statistics 
SUP, ,,WT(r),. . . , SUP, lr LRT(r)  must diverge to infinity as T + w to obtain 
a sequence of level a tests. By bounding r away from zero and one, however, a 
fixed critical value suffices for all T large. This suggests that the restriction of II 
to a set whose closure is in (0,l) yields significant power gains if the change 
point is in II or is close to II. Some Monte Carlo results of Talwar (1983) and 
James, James, and Siegmund (1987) for the location model substantiate this 
result. Furthermore, the Monte Carlo results of Talwar (1983) show that the test 
statistic sup,, ,WT(r) has much closer true and nominal sizes in the location 
model under nonnormal errors when II is restricted than when II = [O,11. 

2. Suppose 7j maximizes W,(.rr), LM,(r), or LR,(.rr) over [O, 11. By Theorem 
- E l3 and Corollary 1, SUP, , WT(r)= Op(l) Y E> 0, SUP,, WT(r) +p w 

under the null hypothesis, and analogous results hold for LMT(r) and LR,(r). 
In consequence, 7j4, {O,l} under the null hypothesis. By symmetry, presum- 
ably, 7j-tdBern(l/2), where Bern(l/2) denotes a Bernoulli distribution with 
parameter 1/2. In contrast, if II has closure in (0,l) and Q,(.) has a unique 
maximum on II with probability one, then 7j-tdargmax{Q,(r): r E II} by the 
continuous mapping theorem. The latter distribution has support equal to II. 

5.3. Asymptotic Critical Values 

Critical values c, for the test statistics sup,, ,W,(r), . . .,sup,, ,LR,(r) 
are provided in Table I based on their asymptotic null distribution 
sup,,, Qp(r). By definition, c, satisfies P(sup,, ,Q,(r) > c,) = a. The table 
covers a = .01, .05, and .lo, p = 1,2,.. . ,20, and II = [ r , ,  1- r , ]  for an array of 
rOvalues between .05 and S O .  

Table I covers a much wider range of intervals IT, however, than just the 
symmetric intervals [T,, 1-T,]. If 17= [ r l , .rr21 for 0 < rl,< r2< 1, then it can 
be shown (see the proof of Corollary 1 in the Appendix) that 

where BM(.) denotes a p-vector of independent Brownian motion processes on 
[0, w). In consequence, critical values based on the distribution of 

Qp(.rr) depend on rl and .rr2 only through the parameter A = r2 (1  
- .rrl)/(adl - .rr2)). Table I provides the value of A corresponding to each 
value of rOconsidered (viz., A = (1 -~ , ) ~ / r ; ) .  This allows one to obtain 
critical values for all intervals II=[rl,.rr21 whose corresponding value of 
A = .rr2(l- r l ) / ( r l ( l  - .rr2)) either is tabulated or can be interpolated from the 
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TABLE I 
ASYMPTOTICCRITICALVALUES 

"Tn A 10% 

p = 1 

5% 1% 10% 

p = 2 

5% 1% 10% 

p = 3  

5% 1% 10% 

p = 4  

5% 1 10% 

p = 5 

5% 1% 
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table. The table covers values of A between 1and 361, so almost any interval of 
interest can be considered. 

Note that IIBM(.)ll is a Bessel process of order p. In consequence, the 
probability given in (5.1) is the probability that a Bessel process exceeds a 
square root boundary somewhere in the given interval. Such probabilities and 
corresponding critical values for given significance levels have been computed 
numerically for p G 4 for a variety of A values by DeLong (1981). In contrast, 
the critical values given here have been computed by simulation. They cover a 
considerably wider range of values of p and A than those considered by 
DeLong. 

The values reported in Table I are estimates of the critical values c, obtained 
by (i) approximating the distribution of the supremum of &,(TI over .rr E [T,, 

1-T,] by its maximum over a fine grid of points n ( N )  and (ii) simulating the 
,(,, distribution of max,, Q,(T) by Monte Carlo. The grid n ( N )  is defined by 

The value of N was chosen to be 3,600 based on a comparison of the 
approximations obtained here with the numerical results of DeLong (1980, 
which are available for p G 4. A single realization from the distribution of 
max,,.,(,, Qp(r)  was obtained by simulating a p-vector Bp(.) of independent 
Brownian motions at the discrete points in n ( N )  and computing ,,,,,max, ( B,(T> - TB,(I))'(B,(T) - TB,(I))/[T(~ - T)]. The number of 
repetitions R used was 10,000. The accuracy of the simulated critical values for 
approximating the critical values based on the statistic max, ,,(,, 

determined by noting that the rejection probability of the statistic 
Q,(T) can be 

,(,, max,, Q,(T) using the simulated critical value has mean a and standard 
error approximately equal to (a(1 - a) /~) ' / ' .  For a = .01, .05, and .lo, the 
standard errors due to simulation are .001, .002, and .003 respectively. 

5.4. Asymptotic Local Power 

In this section, we consider the behavior of &.), WT(.), etc. under sequences 
of local alternatives. We introduce the following assumption: 

ASSUMPTION LP: Assumption 1 holds but with the assumption in part (b) 1-
that Em,, = 0 Vt ,< T, T 2 ,( l f i ~ ~ ( ~ , ,  p ( ~ ) l l =op(l)1 replaced by sup,, T) -
for some nonrandom bounded R'"-valued function p on 17. 

We write p ( ~ )  = (pl(rTT)I, p2(~TT)IY for p l ( r ) ,  p2(7)  E R". 
In many cases, p ( ~ )  can be expressed in more primitive terms. For example, 

suppose (i) Assumption 1-LP holds, (ii) {W,,: t < T, T 2 1) is such that 
Em(W,,, Po + r( t /T)/  fi,6,) = 0 Vt < T, T >, 1, for some bounded RP-valued 
function r ( . )  on [O, 11 that is Riemann integrable on [O,T] uniformly over 
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T E E uU1},8 and (iii) max, ..supg: IIP-Pol l  K / f iIIE(a/apt)m(WTt, p, 6,) - M I I  

+0 as T +w, where K = sup, ,,Ilq(~)ll. In this case, 

THEOREM4: Suppose Assumption 1-L P  holds, Assumption 2 holds except in 
part (a) below, and Assumption 3 holds except in parts (a) and (e) below. Given 
any set E whose closure lies in (0, I), the following processes indexed by T E E 
satisfy : 

(a) fi(&.)3(M(Y~()M(.))-~M(.YY(+)(G(.)p(.));-!,I 	 -
(b) SUP,,, IIT/,(T)- VII +,0 for r = 1,2; 
(c) WT(.)*Q:(.)=J:(.YJ:(.) and SUP,EnWT(~)+d SUP,,~Q,*(T), 

where 

J,*(Tr) = 
B p ( 4  - rBp(1) 


[ T ( l  -T ) ]  


(d) LMT(.)*Q,*<.) and sup,, ,L M T ( ~ )+,sup, ,,Q:(T); 
(e) LRT(.)3 Q,*(.) and s u ~ , , ~ L R , ( . r r ) + ~  sup,,, Q,*(T); 

where Bp(.) is a p-vector of independent Brownian motions on [O,1] restricted to 
( C C ' ) - ~ / ~ C  ( M ' s - ~ M ) - ~ M ' S - ~ / ~E, A = E RpxY, and C = E RPXY.If p = ZJ, 

one can take A =I,. The convergence in (b)-(e) holds jointly. 

COMMENTS:1. The local power results of Theorem 4 are similar to those 
obtained by D. L. Hawkins (1987), but are more general. Hawkins' results cover 
the particular case of one-time structural change in which p( . )  is as in (5.3) with 
7( .)  of the form 7 ( ~ )  = b l ( ~< 7,) for some fixed T, E (0,l) and some con- 
stant b. His results apply to ML estimators in iid contexts. 

2. When p( . )  satisfies (5.3), Q:(.) depends on T(.) in the following way: 
Q,*(T) =J:(TYJ:(T) and 

1- 1/2 

(5.4) 	 J: (T)  = p T p 1 + A s - / M ( ( )  iT7( s )  ds 
[T(1  -T ) ]  

By definition, this means that 7 is Riemann integrable on [0,a] V a E llU (1) and 
( 1 / T ) C T T 7 ( t / ~ )-, j{q(s) ds uniformly over a E llu (1)as T -,m. 
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3. For fixed r E (0, I), Q:(r) has a noncentral chi-square distribution with p 
degrees of freedom and noncentrality parameter given by the squared length of 
the second summand in the definition of J:(r). 

4. By simulating the distribution of sup,,, Q:(r), the sensitivity of the 
power of the test considered here to the form of the alternative, as specified by 
p ( . ) or q(.), can be determined and the results hold asymptotically for a wide 
variety of models and estimators. For example, one can determine the effect of 
the location of the change point on the tests' power by simulating sup,, ,Q z ( r )  
with q ( r )  = 1 ( r  TT 7,) for a variety of values of r , .  The results of Theorem 4 
also can be used to compare the asymptotic power of the tests considered here 
for a wide variety of models with that of other tests in the literature, again by 
simulation. 

5. The local power of the tests considered in Theorem 4 is the same whether 
6, is estimated or is known. 

The local power results of Theorem 4 can be used to show that the tests 
based on sup,, ,WT(r),. ..,supT,, LRT(r)  each have nontrivial power 
against alternatives for which the parameter P,  is nonconstant on Ll. These 
results are analogous to results obtained by Ploberger et al. (1989, Cor. 1) for 
the fluctuation test in the more restrictive context of testing for pure structural 
change in an iid linear regression model. 

COROLLARY2: Suppose the assumptions of Theorem 4(c) (resp. 4(d), 4(e)) hold 
with p ( . )  as in (5.3) but with q( .) replaced by (q(.). Suppose Ll is an interval 
whose closure lies in (0,l). If q is not almost everywhere (Lebesgue) equal to a 
constant vector on II, then 

WT(r)  > c , )  = 1 
[ - m  T - m  

(resp. 

sup L M T ( r )  > c , )  = 1, 

sup L R T ( r )  > c , )  = I ) ,  

where c ,  is as defined above and a E (0,l). 

Next, using Theorem 4, we can establish a weak optimality result for the test 
statistics sup,, ,WT(r),...,sup,, ,LRT(r)  for testing against the alternatives 
in U ,,,H,,(r). This result is a generalization to multiparameter two-sided 
tests of a result of Davies (1977, Thm. 4.2) for scalar parameter one-sided tests. 
The result shows that as the significance level a goes to zero, the power against 
all local alternatives of the level a test based on sup,,, WT(r) is at least as 
large as that of the level a test based on WT(ii) for any fixed ii ELl. Thus, if 
WT(ii) possesses asymptotic local power optimality properties against certain 
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alternatives, e.g., as it does in the ML case against one-time structural changes 
(i.e., for q(s) = 0 for s < +, q(s) = 8 for s a +I, then sup, ,,WT(r)  inherits 
these properties as a + 0. The same also holds for sup,,, LMT(r )  and 
SUP, ,,LRT(r) .  

THEOREM5: Let q denote a bounded RP-valued function on [O, 11 that is 
Riemann integrable on [O, TI uniformly over T E I7 U {I}. Let 1" denote the set of 
all such functions q for which there exists a distribution P, of the triangular array 
{W,,: t ,< T, T a 1) such that 1-LP, 2, and 3 hold with p( 9 )  as in (5.3). Then, 

(5.5) lim inf inf lim W T ( r )  > c,) -P,(WT(+) > C,)I > 0,
a -0  ~ E B7 i E I I  T -m 

where c, and E, are such that the tests based on sup,, ,WT(r) and WT(+) have 
asymptotic level a E (0,l). The result (5.5) also holds with WT(.) replaced by 
LMT(.) or LRT(.). 

COMMENT:The optimality result (5.5) is referred to above as a weak result 
because it appears that a must be quite small before the result is illustrative of 
finite sample behavior of the test statistics sup,,, WT(r) and WT(+). 
Nevertheless, the result does serve to indicate that as a decreases the dif- 
ference decreases between the power function of the level a test based on 
sup,, ,WT(r) and the envelope of the power functions of the level a tests 
based on WT(+) for fixed + ELI. 

6. CONCLUDING COMMENTS 

1. The tests discussed in this paper are asymptotic in general. Nevertheless, 
exact versions of them can be obtained in some cases. In particular, consider a 
linear regression model with fixed regressors and iid normal errors. In this case, 
the sup Wald test statistic based on the least squares estimator has null 
distribution that is invariant with respect to the regression and variance parame- 
ter values. In consequence, one can set the regression parameters equal to zero 
and the error variance equal to one and generate exact critical values by 
simulating the resultant model. Since least squares regressions are very quick to 
compute, this procedure is not very burdensome computationally. See Andrews, 
Lee, and Ploberger (1992) for further details. 

2. The basic Assumption 1employed above utilizes the concept of near epoch 
dependence. This assumption can be simplified if the underlying random 
variables {W,: t = . . . ,0,1,.  . . }  are stationary and ergodic. In particular, it can be 
shown that Assumption 1 can be replaced by the following assumption and 
Theorems 1-5 still hold.9 Let 3 denote the u-field generated by {W,:- w  < 
t G s}. Let m,, B,, and A, be as in Section 3.2. 

The invariance principle used to show this is given by Hall and Heyde (1980, Cor. 5.4, p. 145). 
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ASSUMPTION1": (a) { W,: t = . . . ,0,1, . . . ) is stationary and ergodic; 
(b) Em, = 0, Em\m, < m, C;= ,(EII ~ ( m ,  ~-,)112)1/2< w,1 and S is positive 

definite; 
(c) m( w, p, 8) is continuously partially differentiable in (P, 8) V(P, 8) E B, X A,, 

Vw E W, c W for a Borel measurable set W, that satisfies P(W, E W,) = 1, 
m(w, P, 6) and am(w, p ,  S)/a(pr, 8') are Borel measurable functions of w for each 
(P, 6) E Bo X A,, and E s u ~ ( ~ , ~ ) ,  BoxdoIlam(W, p ,  8)/a(Pr, 8')ll < m; 

(d) Assumptions l(d), (e), and (h) hold. 

3. In the event that a test for structural change rejects the null hypothesis, it 
may be of interest to estimate the parametric model defined by the restricted 
alternative IJ ,,n H l r ( ~ ) .  This involves estimating the time of change parame- 
ter T. Properties of the maximum likelihood (ML) estimator of T have been 
considered by Hinkley (1970), Picard (1983, 1985), Deshayes (1983), Bai (1990, 
and Bai, Lumsdaine, and Stock (1991) for a variety of models. No optimality 
properties are known for the ML estimator of 7. 

Cowles Foundation for Research in Economics, Yale University, P.O. Box 2125 
Yale Station, New Haven, CT 06520, U.S.A. 

Manuscript received June, 1991; final revision received November, 1992. 

APPENDIX 

For notational simplicity, we say X T ( a )= op,(l) i f  sup,, ,llX,(a)ll = o,(l) and we say 
X,(T) = 0,,(1) i f  sup,,, llXT(a)ll= OP(1). 

First we provide conditions under which the PS-GMM estimator is consistent for 0, 
uniformly over T E II under the null hypothesis. 

ASSUMPTIONA: (a) Assumption l (a)  holds. 
(b )  sup,, ,l l ? ( ~ )- y(a)ll +,0 for some symmetric 2 v  X 2 v  matrices y ( a )  for which 

S U P ,  ~n IIY(T)II < m. 
(c)  B and A are bounded subsets of R P  and Rq respectively. 
(d)  m(w,p ,  6 )  is continuous in w for all ( p ,  6 )  E B X A and is continuous in ( p ,  6 )  uniformly over 

( p ,  6 ,  W )  E B X A X C for all compact sets C c W. 
(e )~ , , , ( l / ~ ) ~ T ~ s u p ~ ~ , ~ ) , ~ ~ ~lm(WTt,P,8)11CE< m  for some e > 0. 
( f )  lim, ,,( l /T)CT"Em(WTffp, 6 )  exists unijormly over T )  E B X A X II and equals 
lim,,,(1/T)ETEm(wTf,p,6). 
(8) &(Po, 6,) = 0, where h ( P ,6 )= lim, ,,( I / T ) ~ T E ~ ( W , , ,  p, 6) ,  and for every neighborhood 

0, ( C 0 )  of 0,, inf,,, info,,/,, m(O,aYy(a )m(0 ,a )> 0, where m(0, a )= ( n - h ( p l ,6Y,(1 -
T)h(P2,6YY.  

When Assumptions 2 and 3 hold, Assumption A(b) automatically holds and A(g) simpli- 
fies to: h (p0 ,6 , )  = 0 and for all neighborhoods B, and A, o f  Po and A,, respectively, 
i n f ( p , S ) E B X A / B O ~ ~ oh ( P > 6 Y S - ' h ( P ,  6 )  > 0. 

THEOREMA l :  Under Assumption A, the PS-GMM estimator satisfies sup,, ,l ( ; ( ~ )- 0,ll -+, 

0 for any set II whose closure lies in (0 , l ) .  
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COMMENT: estimator i,Assumption A onlyTO obtain consistency o f  the full-sample GMM 
needs to be altered slightly. Consider the condition A(b'): q +, y for some nonsingular symmetric 
v x v matrix y, where is the weight matrix o f  the full-sample GMM estimator. W e  have 6 +,! O o  i f  
Assumption A holds with A(b) replaced by A(bl) and with A(g) replaced by the simplified version o f  
A(g) given above except with y in place of  S-'. 

The proof o f  Theorem A1 uses the following three lemmas (the latter two of  which are also used 
in the proofs o f  other results below). 

LEMMA A l :  Suppose ; (a )  minimizes a random real function QT(O,a) over 0 E O c for 
each .rr E Il  with probability + 1. If (a) sup,, n, 1 QT(e, a )  - Q(O,a )1 -,0 for some real 
function Q o n  O x I l a n d  (b)iorevely neighborhood O O ( c O )  of 00, inf,,,(inf,,o/o,Q(O,~)- 
Q(O,,P)) > 0, then sup, ,,IlO(.rr)- Ooll -,0. 

LEMMAA2: Suppose ( X T t :  t < T ,  T > 1) is a triangular array of mean zero real-valued ru's 
that is LO-NED with respect to a strong mixing base {YTt: t = . . . ,0,1, .  . . ; T 1) and 
~ T , , ( l / ~ ) ~ T ~ ~ ~ T , l ' i E  m.< m for some E > 0. Then, E supsGT I( l /T)CfxT,I  -0 as T- ,  

LEMMAA3: Suppose (a) Assumption l (a)  holds, (b) A is a bounded subset of RS ,  (c) f(w, A) is an 
Rc-valued function on W x A that is continuous in w for -1  A E A and is continuous in A uniformly 
over (A, w )  E A  X C for all compact sets C cW, and (d )  l imT,,(l /~)CTE sup,,. ( f(WTt,A)I '+E< 
m for some E > 0. Then, 

PROOFOF THEOREMA l :  W e  apply Lemma A1 with QT(O, P )  = K T ( @ ,  a) '9(rr)ZT(e ,P)  and 
Q(O, P )  =m(O, ayy(n-)m(O, T ) .  Condition (b)  o f  Lemma A1 holds by (Assumption) A(g). Given 
A(b), condition (a) o f  Lemma A1 holds i f  

( A J )  sup sup I I Z , ( O , T )  -m ( O , a ) ( ( + ,  0 .  
,EL' B E @  

Using C;,,, = CT - CT", the latter holds i f  

where al = inf{n-:P €171 > 0. (A.2) holds by Lemma A3 under A(a)-(e). (A.3) holds by A( f ) .  
Q.E.D. 

PROOFOF LEMMAA l :  By Assumption (b), given any neighborhood O0 o f  O o ,  there exists a 
constant E > 0 such that in f ,  ,,[inf,, .,,,, Q(O,+) - Q(Oo,+)I > E > 0. Thus, 

(A.4)  P ( ~ ( T )E O/Oo for some a E fl) 

G P (  TGL'jnf [ Q ( ; ( P ) , ~ )- Q ( O ~ , + ) ]> E for some E fl1 
g p(~( ; ( . r r ) , . r r )-Q(Oo,a )> E for some a E IT) + 0 ,  

where " +0" holds provided sup, ( Q ( ~ ( P ) ,  Q(Oo,.rr) ( +, 0. Using Assumptions (a) and , .rr) -
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(b), the latter follows from 

(A.5) 0 < inf [ Q ( i ( a ) , a )  -Q ( O ~ , P ) ]< sup [ Q ( ~ ( P ) , P )  - ~ ( e o , ~ ) ]
T E I I  T E ~ 

< sup [ Q ( ~ ( P ) , T )  - Q ~ ( ~ ( T ) , T ) ]+ sup [ Q T ( ~ ( T ) , ~ )- Q ( ~ o $ P ) ]  
~ r e n  Tr E I Z  

< Sup [ Q ( ~ ( P ) , v ) - Q T ( ~ ( T ) , T ) ]  + sup [ Q T ( ~ O , T ) - Q ( ~ O ~ ~ ) ]  
T E ~ 

Q.E.D. 

PROOFOF LEMMAA2: Under the moment conditions, (X,,) is L1-NED by Theorem 6.1 of 
Potseer  and Prucha (1991). This property and inequalities (2) and (3) of Andrews (1988) show that 
6 )  ~imT+m(l/T)~~~E(xTl~YTl,.. ,YTr-m)l+ 0 as and (ii) l i m T + m ( l / ~ ) ~ T l ~ T r. i77 +m -
E(XTrI YTr+m,.. .,YTT)I +0 as m +m. Conditions (i) and (ii) are a slightly weaker version of the 
L1-mixingale condition of Andrews (1988) with constants c, = 1 and r-fields FT!given by those 
generated by {Y,,). Theorem 1 of Andrews (1988) holds with the L1-mixingale condition replaced by 
(i) and (ii). In fact, the conclusion of Theorem 1 can be strengthened from E I(~/T)CTX~,I + 0 to 
E supsGT I ( ~ / T ) C ~ X , , ~  +0 as T - with some alterations in its proof. This gives the result of 
Lemma A2. The alteration: in the proof of_ Theorem 1 include changing (l/n)C;=l. to 
supjG I(l/n)Cj=, . I and E I YmnI to E_sup,. I Ym,I in equation (7) and strengthening the result of 
the Lemma in Andrews (1988) from IIYnllp +0 as n +m to IlsupjG I (j/n)I; 1 11, -0 as n +a.To 
achieve the latter, the proof of the Lemma needs to be changed by replacing (l/n)C;-l. by 
SUP, I (l/n)Ci, . I throughout and by using the martingale inequality Ilsup,, ,1 (l/n)E{= l ( v  -
E(U.;I q- , ) ) I  11 2 < 2ll(l/n)C:= , (w  -E ( K  I q-,))112 due to Doob (see Theorem 2.2 of Hall and 
Heyde (1980, p. 15)) in equation (4). Q. E. D. 

PROOFOF LEMMAA3: The desired result follows from Theorem 1 of Andrews (1992) with Gn(0) 
set equal to supsGT l ( l / ~ ) E f [ f ( W ~ , ,  A) -Ef(WTr,A l l .  Hence, it suffices to verify the conditions 
BD, P-WCON, and SE of Theorem 1. BD holds by Assumption (b). For Gn(0) as above, the proof of 
Lemma 3 of Andrews (1992) shows that DM and TSE imply SE. DM holds by Assumption (d). By 
Lemma 4(b) of Andrews (19921, TSE-2 implies TSE. TSE-2 holds by Assumptions (a) and (c). It 
remains to show P-WCON. Under Assumptions (a), (c), and (d), Theorem 6.5 of Potcher and 
Prucha (1991) implies that (f(W,,, A): t < T, T >  1) is Lo-approximable by the base (YTl) for all 
A E A. By Assumption (d) and Theorem 6.1 of Potscher and Prucha (1991), the approximators can 
be taken to be the conditional means {E(f(WT,, A)I YT,-,, ...,Y,,,,): t < T, T 3 1, m 1). In 
consequence, {f(WTr, A): t < T, T > 1) is Lo-NED on the strong mixing base (Y,,) for all A E A. We 
now apply Lemma A2 with X,, equal to an element of the c-vector f(WTl, A) -Ef(WTt, A) to 
obtain P-WCON. Q. E. D. 

The following lemma is used in the proof of Theorem 1. 

LEMMA A4: Let {77,(.): T > 0) be a sequence of random elements of the space of bounded 
R"-ualued cadlag functions on a set A c [O,l]. If (i) (Y'T,(.) (Y 'T~(Va ER" and (ii) ( T ~ ( . ) :  T > 1) 
has asymptotically independent increments (as defined, e.g., by Billingsley (1968, p. 157)), then 
TI,(.) =,770('). 

(Note that Prop. 4.1 of Wooldridge and White (19881, which claims that condition (i) alone is 
sufficient for a multivariate invariance principle, is not correct. Their proposition cannot be derived 
in the manner they suggest.) 

PROOFOF THEOREM1: Since $P) minimizes ET(O, a)'f(a)RT(O, T) and $(P) is in the interior 
of O VP El7 with probability + 1 by (Assumption) l(d), we have 
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Let mTj(0,r)  denote the jth element of TiiT(0,r). A mean value expansion of fiEiTj(i(r),r) 
about Bo gives: Vj = 1,. . . ,2v, 

where 8*(= O,*(r)) is a rv on the line segment joining ;(a) and 8, (see Jennrich (1969, Lemma 3) 
for the mean value theorem for random functions). The latter property and l(d) imply that 
e* = 0, + op,(l). 

Below we show that 

am e* 
(A.8) sup T( -M(a)ll  -rP011 

TrEII 

whenever O*(r) satisfies sup,, ,llO*(r) - eoll-,0. We also show that 

as a process indexed by a E I7. Equations (A.614A.91, l(e) and (h), and the continuous mapping 
theorem (see Pollard (1984, Thm. IV.12, p. 70)) combine to give the desired result: 

- -(~(.yy(.)~(.))-'~(.yy(.)~(.). 

To establish (A.81, we write 

The third summand on the right-hand side of (A.ll)  -r, 0 by l(g). The first summand -r, 0 because 
Assumption 1 and Lemma A4 yield 

Finally, the second summand on the right-hand side of (A.ll)  +, 0, because (i) by the tightness of 
(pT: T 11, supT> (~/T)E:P(W~~ E C,) -'0 as j -r for some sequence of compact sets 
{Cj:j > 1) in W; (ii) for all j > 1, we have 

am(w,P, 8)  
-

am(w,Po, 60) 
-t'JY:, I1 a(pl.  6.) J(P', 8') 

as (p,  6) -' (Po, aO) using l(f); and (iii) results (i) and (ii) combine to give 

1 T" a m ( w ~ , , p , a )- a m ( w ~ l , P o , 6 0 )  +
(A.14) sup sup 1IIr > l  ,En 117F E [  a (p l , a r )  a(pl,  8') 

as (p ,  6) -(Po, 60). Thus, the right-hand side of (A.11) -rp0 and (A.8) is established. 

http:(A.614A.91
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Next, to show (A.91, let v,(T) = (I/ f i)cTrm,.  Since f imT(eo ,a )  = (v,(a)', -~ ~ ( 1 ) 'vT(aYY, 
(A.9) follows from vT(.) =, s'/~B(.). To obtain the latter, we apply Lemma A4. Under l(a)-(c), we 
obtain condition (i) of Lemma A4 by Cor. 3.1 of Wooldridge and White (1988), which utilizes results 
of McLeish (1977). (Note that Cor. 3.1 yields weak convergence of the standard partial sum process 
in D[O, 11 with the Skorokhod metric and the Borel u-field generated by it. This can be converted 
into weak convergence in D[O, 11 with the uniform metric and the u-field generated by the closed 
balls under the uniform metric as follows. The result of Cor. 3.1 implies weak convergence of the 
smoothed partial sum process (i.e., a l v T ( r )  + (TT - [~a])a 'm[ , ,~+,/ fi) using the Skorokhod 
metric on D[0,1], because the difference between the standard and the smoothed partial sum 
processes is G sup,. , I  a'm, 1 / fi and the latter is op(l) by the Lindeberg condition; see Hall and 
Hyde (1980, p. 53). Since the smoothed process is in C[O, 11, the Skorokhod and uniform metrics are 
equivalent for C[O, 11, and the Borel u-field and the a-field generated by the closed balls under the 
uniform metric are equivalent for C[O, 11, the smoothed partial sum process converges weakly as a 
sequence of random elements of C[O, 11 with the uniform metric and its Borel u-field. This yields 
the desired univariate invariance principle for the standard partial sum process, a'v,(a), in D[O, 11 
with the uniform metric and the a-field generated by the closed balls under the uniform metric, 
because the difference between these two processes is less than or equal to sup, .,la'm,l /fi= 

op(l). 
To obtain condition (ii) of Lemma A4, it suffices to show that 

By the Cram&-Wold device, the latter holds if 

(Note that this result is not implied by a lvT( , )  = a1v(.) Va ER".) TO obtain (A.161, the same 
central limit theorem as used above, viz. Cor. 3.1 of Wooldridge and White (19881, can be employed. 

Q.E.D. 

PROOFOF LEMMAA4: Conditions (i) and (ii) are sufficient because (a) tightness of (atvT(.): 
T > 1) Va ERY implies tightness of (vT(.): T > 1) on the v-dimensional product space, (b) asymptot- 
ically independent increments plus weak convergence of vT(a2)- v T ( r l )  VO 6 al < r2< 1 is 
sufficient for joint convergence of all the finite dimensional distributions of (vT(.): T > 11, and (c) 
weak convergence of a tvT( . )  to a lvO(. )  Va E R" implies weak convergence of ( Y ' ( ? ~ ~ ( T ~ )  - TJ,(T~)) 
to ~ ' ( V ~ ( T ~ )  - vO(al)) VO Q al< a2Q 1 which, in turn, implies weak convergence of vT(T2) -
v , ( ~ , )  to v 0 ( r 2 )  - 7 ) 0 ( ~ 1 )  Q.E.D.using the Cram&-Wold device. 

PROOFOF THEOREM2: Assumptions l(h) and 2 imply that M'S-'M is nonsingular and hence 
that V is well defined. By the argument of (A.11)-(A.14) and Assumption l(d), sup,, ,l lM,(~)-
MI1 +,0. By Assumption 3, sup,, ,l lS , (~)- SII -r, 0. Using Assumption 2, this gives the desired 
result. Q.E.D. 

The following Lemma is used in the proof of Theorem 3. 

LEMMAA5: Let J(T) be a nonsingular (2p + q) X (2p + q) matrk of the form 

where al  and a2are nonzero scalar constants, J ER ~ J2E R pXq, ~ J3 ,E R ~ Jq ~ ~ ,~ E RqXP, and 
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J, ERqXq.Let g = (g;, g;, g;)' be any vector in R~~~~ and let H = [ I  ' - Ip:O]E R P ~ ( ' P + ~ ) .Let
p:  . 

and H, = [I,: - I,]. Then, HJ- ' (T)~ = H ,  J; '(T)~* 

PROOF OF LEMMA A5: Let v = (v;, v',, v;) =J - ' ( T ) ~  and v' = (i;,v'kY =J* ' (T)~ * .  Since 
J(a)v =g, we have 

W - ' ( T ) ~= v1 - v2= - fi2 =H* ~ - ' ( a ) ~ ,  Q.E.D.i1 . 

PROOFOF THEOREM3: Let the subscript * be a deletion operator that deletes the last q rows 
and columns of (2p + q) x (2p + q) matrices, the last q rows of 2p  +q-vectors and (2p + q) Xp 
matrices, and the last q columns of p x (2p + q) matrices. Let 

where the second equali holds by Assumption 2. By Lemma A5, we have H J - ' ( T ) ~ =  
H, J;'(n)g, for all ERYP*q (where I;'(=) = [J,(T)]-'). 

First we establish part (a) of Theorem 3. Let C = (M's-'M)-'M's-'/~. By Theorem 1 and 
Lemma AS, we have 

('4.19) f i ( b l ( 9  - b 2 ( 9 )  

= C[B(.)/L(.) - (B(1) -B( . ) ) / ( l  -&(. ) ) I ,  

where L(T) =T. By Theorem 2, 

(A.19) and (A.20) and the continuous mapping theorem (see Pollard (1984, Thm. IV.12, p. 70)) 
give 

('4.21) W T ( . )= (B,(.) -L(.)B,(~))'(B,(.) -L ( . ) B , ( ~ ) ) / [ L ( . ) ( ~- ~ ( . ) ) 1 ,  

where B,(.) = ( C C ' ) - 1 / 2 ~ ~ ( . ) .B,(.) is a p-vector of independent Brownian motions because 
(CC')-'/~C[(CC')-~/~C]'= I,. This establishes the first result of part (a). The second and third 
results of part (a) follow from the first using the continuous mapping theorem. The same is true for 
parts (b) and (c), so it suffices to establish the first result in parts (b) and (c). 
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Next we establish part (b). By Theorem 2, c ( a )  = V+ o,,(l). In addition, we show below that 

Hence, it suffices to show that LM$(.) -en(.),where 

(A.23) LM:(P) = c:(a)'(v/r + V/( l - r))- 'c;(a) and 

0 
c!(r) = [I,: -I,] 1 

0 - (M~S-~M)- 'MJS-~
1 - a  1 

Using Lemma AS, we obtain 

Equations (A.714A.9) with i ( . )  replaced by 6 ( . )yield 

This result and (A.24) give 

using the last three equalities of (A.19) and the fact that H ~ ( v )  =Heo = 0. Equations (A.23) and 
(A.26) combine to give the desired result LM:(.) =, Q,(.)in the same way that (A.19) and (A.20) 
yield (A.21). 

For part (b), it remains to show (A.22). This follows from (A.251, since (i) sup,, IIfiAT(Oo, a)ll 
jdsupTEn IIG(r)ll (< m a.s.) by (A.9) a?d the continuous mappi?g theorem, 

(ii) sup,, M(r)ll< m, and (iii) f i ( 0  - 8,) = 0,(1) because 0 is consistent by l(d) and, given 
consistency, is asymptotically normal by standard arguments given the remainder of Assumption 1. 

Next, we consider part (c). For brevity, we only give a sketch of its proof. First, by element by 
element mean value expansions, one obtains 

dAT(i ,a)fi( i  - i)
(A.27) f i A , ( i , r )  = f i m T ( i , r )  + +o,,(l) and aor 

where the second equality uses (A.6). Let 6 ( r )  be the restricted PS-GMM estimator that minimizes 
FE,(e, ?r)'+(a)mT(e, a )  over 0, = (6 E O : e = (p', p', 8')'). The first-order conditions for-O(a)-yield 
[am,(O(a), ~ ) / a e ' ] ' ~ ( ~ ) m , ( O ( a ) ,  H'A for some p-vector of Lagrange multipliers A (= A(r)).a )  = 
Under Assumption 2, the full sample GMM estimator 0 can be shown to satisfy the !ame first-order 
conditions up to o,,(l/fi). This result, premultiplication of (A.27) by [aR,(O,a)/aO']'~(a), 
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rearrangement of (A.27), and application of (A.6) give 

= f i J - ' ( r ) H 1 i  + o,,(l) and 

( A . ~ o )  LR,(T) ~ ~ J H J - ~ ( ~ T ) H ~ ( W - ~ ( ~ ) H ~ ) - ~ ~ ~ H J - ~ ( T ) H ~ ~= 	 + o p V ( i ) .  

By Lemma A5 and the definitions of i and c$ (a ) ,we have 

Combining (A.30)-(A.32) gives L R T ( a )= LM;(P) + o,,(l) and the desired result follows from 
the proof above that LM$. ) =Q,(.). Q.E.D. 

PROOFOF COROLLARY = - L(.)B,(.),which appears in the definition 1: The process BE(. )  B,(.) 
of Q,(.), is a p-vector of independent Brownian bridge processes on [O,l].An alternative method of 
defining such a process is via a p-vector EM( . ) of independent Brownian motion processes on [0, m). 
In particular, we have 

(A.33) { B B ( a ) : 7~ E [ O , I ] }= ( ( 1- r ) B M ( a / ( l  -T ) ) : T E [o,I ] } ,  

where = denotes equality in distribution. Hence, we have 

sup B M ( L ) ' B M ( ~ ) / ( ~ ) < c )= P (  T E [ T ~ . T Z ]  1 - 7 ~  1 - 7 ~  1 - 7 ~  

=p (  sup BM(')'BM(')/(') <.)
s € [ l , T 2 1 - T l / T l - T l  l - T l  1 - P I  1-7T1 

= P (  SUP B M ( s ) r n ( s ) / s  < c 
~ € [ l , T 2 ( 1 - T 1 ) / ( T 1 ( 1 - T 2 ) ) 1  

for all 0 < P ,  d .rr2 < 1 and c > 0, where the second equality holds by change of variables with 

by definition, and BAT(.) is also a Brownian motion on [O,m)(by direct verification). 
The result of Corollary 1 is now obtained as follows: 

(A.35) lim P( sup WT(=) < c )  d lim P (  SUP W T ( T )  < c )  
T + m  	 ~ ~ [ 0 , 1 1  &+o  T'm V E [ E , ~ - E I  


-

= lim P( sup Q,(T) < c )  

E + O  T E [ E , ~ - E I  

=P (  sup < c )  =B M ( S ~ B M ( S ) / S  O. 
s e [ l , m )  

where the first equality holds by Theorem 3, the second by (A.34), and the last by well known 
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properties of Brownian motion (i.e., the law of the iterated logarithm). The proof is identical for 
LMT(r)  and LRT(r).  Q. E. D. 

PROOFOF THEOREM4: Part (a) holds by the proof of Theorem 1, noting that (A.9) holds with 
G(.)  replaced by G(.)  + p(.) ,  since f i ~ ~ ( 0 ~ ,  - + f i ~ ~ i i , ( e , ,= fi(ET(6,,  EET(Oo, 
=, G(.) + p ( . )  under Assumption 1-LP. Part (b) holds by the proof of Theorem 2. 

Parts (c)-(e) hold using the proof of Theorem 3 with references to Theorems 1and 2 replaced by 
references to Theorem 4(a) and (b), respectively, with G( . )  replaced by G(.)  + p(.), with the 
right-hand side of (A.19) replaced by 

and with the right-hand side of (A.21) and (A.26) changed accordingly. Q. E. D. 

PROOFOF COROLLARY in (5.4), it 2: By Theorem 4(c)-(e) and the nonsingularity of AS-'/'M 
suffices for Corollary 2 to show that 

does not hold. Note that (A.37) holds if and only if 

where ~ ( a )  = . . . ,TJ~(~)) ' .( ~ ' ( r ) ,  Thus, it suffices to show that (A.38) does not hold. 
Suppose (A.38) holds. Then, since aldV,(s)ds is twice differentiable in r V a  E int(II), Vj = 

1,.. . ,p, so must be j{~,(s) ds, where int(II) denotes the interior of II. In particular, we must have 

V a  E int ( I I ) ,  Vj = 1 , . . . ,p.  

This implies that 7, = c, almost everywhere (Lebesgue) on II for some constant cj  V j = 1,. . . ,p, 
which is a contradiction. Q.E.D. 

PROOFOF THEOREM5: Let u, = c;/' and t, =FA/'. We will show that 

(A.40) u, - t, - + O  as a -+ 0. 

Then, using Theorem 4, we have 

lim inf inf lim 1a-0 R E Z  +En  T+m 

= lim inf sup [P,( sup ~ : ( r ) " ~  > u,) -P~(Q;(+)'/' > t,)] 
a-0 R E E7 i ~ n  "ELI 

lim inf sup [P,(Q;(+)'/~ > u,) -P,,(Q~* (+)"' > t,)] 
a-tO T E E+en 

where the last equality uses (A.40) and the fact that Q,*(+) is a noncentral chi-square rv and the 
density of the square root of a noncentral chi-square rv is bounded above uniformly over all possible 
values of its noncentrality parameter. 

To show (A.40) we use an argument similar to that of van Zwet and Oosterhoff (1967, 
p. 675). Let a, = inf ( a  E n )  > 0, let r2= sup ( a  E I I )  < 1, and let v, be such that 
P(supVE[T I , , T I 2 I  Q;(T)'/~ > v,) = a .  Since t, d u, g v,, to establish (A.40) it suffices to show that 
v, - t, -+ 0 as a -+ 0. 
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By a result of James, James, and Siegmund (1987, eqn. (261, p. 78), we have 

(A.42) P (  	 sup Q,(r)'/'> v,) = ~ , v ~ - ~ e x p ( - $ / 2 ) ( ( $  - p )  I O ~ A+ 4 + o(1)) 
T r ~ [ T r , . ~ 2 1  

as a + 0, where Q,(.) is as in Theorem 3, K, is a constant that depends only on the dimension p 
of the Brownian bridge vector that underlies Q,(.), and A = r 2 ( l  - r1 ) / [ r l ( l  - r 2 ) ]  Taking 
r l= r2= 7j in (A.42) yields log A = 0 and 

(A.43) 	 ~ ( ~ , ( 7 j ) " ~> t,) = K , ~ , P - ~  exp ( -t2/2){4 + o(l)} as a -,0. 

The left-hand side of (A.42) and (A.43) each equal a. Thus, the logs of the right-hand side of 
(A.42) and (A.43) can be equated to yield 

(A.44) 	 ( p  - 2) log v, - v2/2 + log { (v; - p )  log h + 4 + o(1)) 

= ( p  - 2) log t, - t2/2 + log (4 + o(l)} and 

as a -,0, using the fact that t, + m as a + 0 and t, d v,. Since I v, - t, 1 < v, - t:/v,, (A.45) 
implies that v, - t, -,0 as a -,0. Q.E.D. 
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